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Preliminary notes

In this paper all expressions, derived in the preceeding pa-
per [1] will be simplified and written in another way so that some important
physical conclusions can be made. This will be achieved by applying formulae
(1.12) and defining a covariant derivative of the tensor field h,, again in respect
to the background symmetric Levi - Civita connection Ff,f 48

(1) h

- {o)r {0}
i = Ol + T A1, + 15y “h, #0.

The definition is in accordance with the ‘minus’ sign convention in the
expression (1.10) for F;ﬂ)“ and the covariant derivative 4, is different from
zero because the tensor field £, has entirely different properties from the back-
ground field g{f,)

* Work supported in part by the National Science Foundation in Bulgaria under grant No NIP-
753.
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Throughout the whole paper the Roman letter I will denote forrmulaes,
used in the previous paper 1.

Third-rank tensor ﬂuctuationi connection

In order to define this connection, we shall use expression
(1) to replace all partial derivatives with their covariant ones in the expression
(1.14) for Hlﬂf“ . Remembering also the basic assumption in paper I about the
Riemannian background metric, which means that g“” =0, we derive the fol-

- v
lowing formulae for A{)* :

(2) H ;(1:]“ 5 _é‘g w)m(bvsln + b;tslv T bpvls) *

An important conclusion can be made from (2) : the quantity H'L}“ isa
tensor, unlike the background connection I"flf}“ and it shall be called first fluc-
tuation connection. Formulae (2) was derived also in [2], but there it was not
pointed out that it is valid only under the assumption about the Riemannian
nature of the background geometry. _

By applying again formulae (2), we can rewrite the expression (I.15)
for HZ® in the following way: ‘ -

(3) H::’)'x = fl{f]u E b“bml" {ar

v

where F2'* is the tensor quantity:

2 B = b b (B, + B, — Bas).

nv

Unfortunately, H?* is not a tensor due to the presence of the term

3 - . ]lv . .
£, ' but it is important to mention that a tensor 2w has been singled

uy o
out.

First-and second-order Riemannian tensor and
covariant derivatives of third-rank tensors

In order to write down more concisely'the expressions (I.19)
-(1.22) for R and 2" let us define the covariant derivative of a third-rank

&V
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fensor ;

g = A8 ey (0)B P (0 Uy (Odp
() Hb = H ~ HOrp O+ gOPT U0y HOPT O

iz rva [

with respect fo 1"53’5. The above definition is consistent with the definition of a
covariant derivative of nth rank tensor, given in [3]. By means of (5) the expres-

sion (1.19) for Iﬁf acquires the form:

(6) 1{2[3 = }1(1}3 = H(I)ﬁ

w o 1en’, 3 perfy "

2)p

oy 2

If we apply the formulaes (3) and (5) to the expression (1.20) for 1{
we will obtain:

%) P = PP - BB, RO 4 h (T 0T OB O O0)

oy s
{(#h,), T —(#8,), 7O | + S8

where .S:Li}f is given by the formulaes (1.21) and (. 22) and [ff;\m is the tensor
quantity: '

2p . pl2)p A (0B | pr(Bo zr(118 _ grlllop (0B
®) B = pAb_ g OB Lo P HURE OB,

o uo|v
It may be verified that both sides of the expression:

© HY =t g%, + B0 — )

can be multiplied by gﬁ] and therefore:

(10) By + By — B =280 HO.

By means of (10} we obtain:

11y PP = -2‘-115’(}3

nv

" Bg
+ by = b, )= gl BH P = g B

vslp

Also, the Leibniz rule for a covariant derivative of a tensor product is
valid:

{12} 1_—,\(2}8 - _gltJ)Bq[zmaH(l)y r g(o)ﬁqbv HN

v nvie

The covariant derivative flmia can ¢asily be expressed through the tensors
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HY by means of a cyclic change of indices, then summing up the three equa-
tions (10} and finally equating the obtained result from ¢10). The final result is:

(13) bge = | 80 B + giy HP)
Formulaes (6) - (13) can be used to find a modified expression for
(2B .
oo il
(14) }::;Zﬁ =B R 5 goPs g“’}( H(Ilv I)p H(I}v H(”").

It is important also to see that the only terms in the expression (7) for

i}f , which contain partial derivatives, are
(1% (#°8,) T (#8,) T
and also the term;
(16) E2 = (4n,) IO —(4%5,) Tl

which is a part of the tensor .Sm13 {1.21). However, since it is inconvenient to
deal both with partial and covariant derivatives of one and the same tensor field
&, , we will use (1) and aiso the formulae:

am = e T -

to express all partial derivatives through their covariant ones. Afterwards, all
covariant derivatives of 4, are expressed through the third-rank tensor Hf‘?"

by means of (13) and the following expressions are obtained for (15) and (16):

+ B2

dpzv

+ W

Fpew

+ W

a v Ipay 3jucev

a8y  (#h,) T ~(#n,) TV = w

— BRI 4 R (rw}p rlﬂlp) !1;"11”(1“(0”1“‘“}*‘ rw)rl—m}a)

pva -y uv [ty

9 P a(ih), 1 (1) 1
= (11,80 - (11,) X0 =41,

where V0 | is the tensor quantity;
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(20) V¥ o= jzg(r{om Ao _ o Hmp)
Ba w Yo

and Wffm - W“:m are similar tensor quantities:

20 uﬁav i bf(I‘f‘ﬂ”’ H(:;)p i I‘f:_“’ ]_!{nl'}f’),
22) ufm = B ;?(I“f‘ﬂ” HY rltlg)f Hﬁ?"),
& Wi = 8Py (T LY -T2 HLY)
20 o = (T P -T2 ).

Note that expression (19) is invariant under replacement of all partial
derivatives with their covariant ones. This property is not vz*tid for expression
{18), which is similar in structure to (19}, but its tensor indices have a different
disptacement. N

We have obtained all the necessary formulaes for the derivation of I?f,}f .
Using formulaes (7}, (8), (I.21), (1.22), (14). (18} - (24), we can obtain the follow-
ing modified expression for the second-order Riemann tensor ﬁfwﬂ :

)
(25) R‘i{;ﬂ = _}f hy + “tilvﬂ + dp‘!}ﬁ s 6(3}13 + u;::iﬁ +4_'Vp:\£]}

7y ay ey

where we have used the notations:

26) 0 =2, bR - #4,R),
@7 (20 = g g0 T B - B )
B _ gds {0) s {0 o
(28) G;(lavﬁ i Hi 'hps(rgg‘: L Fstlg}.f) * b f)‘Isf(]'_‘s‘lt'lj-g\i = r‘s{w\}g ) *
28 : 2)
e 8
(29) war = 2}: W
2 B s I . |
and V2P and w28 {/=1,...4) are given by expressions (20) - {24) respec-
e ROV av
ively.
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Discussion

The main result of this paper is that the second-order Ri-
emann tensor and therefore the gravitational Lagrangian can be expressed only
through the background variables gw)”" () I‘jﬁfg and the fluctuation vari-

ables 4, H:I?"‘,Hg,}lg Note that to each hackground variable corresponds a
fluctuation variable. There is also a difference - for example to the background
non-tensor connection F (o corresponds the first fluctuation tensor connec-

tion H{ G ; to the partral denvatwe T( ]5 corresponds the covarrant derivative

}flh

nvg
It is seen also that the structure of the second-order Riemann tensor (25)
is rather complicated, unlike the simplified expression, obtained in {2]. The terms
}{]”j = H“’B H('m and also the quadratic connection term

L,V

o
(H“” H“; H:l'i“ H“ ) are present in [2] and also in this paper. The sum of
these terms, a[though comprised of third-rank tensors and their covariant de-
rivatives, is very similar to the expression for the field strength Gf:‘, in non -

abelian gauge theories [4, 5]:
(30) G, =0,A}—08,A, +ge""A’Al;  g=const

where A/, is a vector non-abelian gauge field. Having in mind the well-known anal-
ogy between the theory of gravity and the non-abelian gauge field theory, one may
assign to Am, the Christoffel connection symbols of second kind Fuv , which playa
similar to AJ role, but in general relativity. The investigation on this subject is far
from being completed and that is why some of the subsequent papers will be devoted

to the some aspects of this theory (particularly the integral formulation).
‘It is timportant to mention that besides the familiar from [2] termis, new terms

WP .G® have appeared in the second-order Riemann tensor (25) in this pa-

uuv’ 1L LU Rl P 193

per. The sum of the terms V.2 (20)and W'2P (5=1,2,3, 4)21) - (24) will be

v
called a ‘potential’ term of interacting background and fluctuation connections.
Another interesting consequence from the performed calculations is the pos-
sibility to define new canonical variables. The fact that the fluctuation metric
tensor 4, entersthe  Lagrangian without any partial or covariant derivatives (re-
member they have been eliminated by use of (13)) means that a conjugate canonical
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impulse cannot be defined similarly to the way this is done in canonical gravity theory
[6] through the relation:

. oL
3l M= G_g (the dot means a time derivative).

However, a generalized canonical impulse.

oL
I—Ipvﬁ =
(32} ' & 3 H:u|3

similar to the one, defined in {2] by the formuiae:

oL
33) . nt? =
( ) 61%1\49

can be introduced. Also, it can be noted that expression {28) fi be (f;’f contains
partial derivatives of the background connection I ;3’“ , which makes it possible
to define canonical impulses:

oL
(34) n]_ == W .

3%

it can be checked that while F:;S} is not a tensor, for the case of the

Lagrangian (1.24) - (1.27)I1. will be a tensor quantity. The question about ca-
nonical variables will be treated in a subsequent publication.
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Bspxy Teopudra Ha meprypOaTHBHATA
IPaBUTALIMS M KBAHTOBATA IPABUTALMS Ha
U3KpHBEH $OH.

II. Tlpunoxkenue Ha KOBapUAHTHH IIPOM3IBCAHH

OT TpPETH paHr
borpan Jaunrpos

Peiwome)

B razm BTopa paloTa ca ONpOCTEHH MOAYYEHHTE B
npeaMiuHarta pafora u3pasd 3a rpaBUTAUHOHHMA JlarpaxuaH oT OBPBH M OT
BTOPH NOPAALK. BbReAEHH Ca KOBAPHAHTHU NPOM3BOJAHM HA TEH30PH OT BTOPH
H TPeTH NOPAABK, Mpe3 KOHTO IPABUTAUMOHHHAT Jlarpaxuax npugoGuea
CPABHHTEIHO KOMIIAKTEH BHA. Pasxpm € CBIND (I)HSH‘-ICCKHﬂT CMHUCH Ha
TEH30PHHUTE uneHoBe B Jlarpaxuaua.
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